
Issues in Process Migration

Sunil Thulasidasan
University of Southern California

thulasid@usc.edu
December 15, 2000

Abstract

Process migration means moving a process in the middle of its execution from one processor or
host to another, for a variety of reasons. Usually, processes are migrated with the aim of
balancing the work load across the cluster so that the capacity of underutilized nodes are also
exploited. The idea of process migration is borne out of the fact that in the over whelming cases of
non migratory scenarios, the capacity of most nodes are under utilized. Allocation can be static or
dynamic. By its very nature, process migration presents a difficult task with many complex issues to
be resolved - transparency, scheduling and allocation policies, interaction with file system, naming,
and scaling. In this paper we look at some well known implementations - Condor, Sprite, MOSIX
and MPVM. We see that facilitating process migration adds considerable complexity to the kernel
where it is implemented at the kernel level (Sprite, MOSIX) and hinders transparency if
implemented at the user level. We also look at some analytical results regarding process migration
benefits for load sharing. We see that the cost of migrating a performance comes mainly from the
cost of transferring state. We conclude that migration, in the general case, should be used only
sparingly, and often as a last resort.

1. Introduction

Process migration refers to the act of disembodying an active process on the machine that it is
currently running, and transferring its state to another machine, where it will resume execution
from the point at which it was suspended. The concept of process migration was borne mainly out
of two observations[1] - a network of autonomous work stations connected by a high speed
network represents substantial computing power , much cheaper than a high performance single
server, and that most of the time, the capacity of these work station is grossly under utilized. Thus
process migration presents an intuitively appealing idea whereby a CPU intensive job can be
moved from a machine, which may be already heavily loaded, to another one, which lies idle. If e
after migrating a process, the process can resume execution oblivious to the fact that it has
migrated, then migration is said to be transparent[2]. Transparency also means that program code
does not have to be different for migratory and non migratory environments. Thus we see, that the
fundamental goal of process migration is load balancing with transparency as an extremely
desirable characteristic. In this paper, we shall look at the following implementations - Condor[3],
Sprite[2], MOSIX[4], and MPVM[5]. We shall see how these systems accomplish (or fail to
accomplish as the case may be) these goals, the trade offs they make, and the conclusions that can
be drawn from the implementors' experience.

In the next section, we shall look at why process migration, at least theoretically, maybe a viable
alternative to static load balancing. In section 3, we shall take a brief look at our case study systems

- their motivation, design goals and philosophy. In section 4, we shall go through, the various issues
on which we analyze these systems - scheduling and allocation, interaction with file systems,
naming, transparency and scale. In section 5 we shall look at the implementation of the migration
schemes in these systems, and how they address these issues. Then in section 6 we shall take a look
at some performance results of these systems when compared with non migratory or static schemes.
In section 7, we briefly go through some analytical results in this field and how the results of the
case studies match these. Finally in section 8 we conclude with our general observations on the
suitability of process migration.

2. What can migration achieve?

It is possible that when a process is created, say, using the exec system call in UNIX, it can be
statically allocated to a processor in the pool such that load is balanced. The problem arises due to
the fact that loads can vary greatly over time, and generally it is not possible to have apriori
knowledge of load distribution. Also, how would a target processor be chosen in the first place?
Moreover, in a network of workstations, there is the concept of ownership of workstations [2], so it
is appropriate that a process be evicted from a previously idle work station when the user reclaims
it. Also, a static scheme wouldn’t be transparent, implying that it would be up to the user or the
process to decide which machine to execute on. Thus if the scheme has support from the kernel,
then performance can be greatly improved[1].

The important features one hopes to achieve while implementing a process migration facility [1]
would be automatic allocation and scheduling, with fairness, transparency, automatic eviction and
over all performance improvement by load sharing. Of course, particular implementations have
their own priorities with respect to these goals, for e.g., in the Sprite network operating system,
transparency, eviction and performance improvement were the main considerations [6], while in
MOSIX the prime consideration was dynamic load balancing[4], and in Condor[3] where the
scheme was implemented at the user level, transparency was sacrificed for ease of implementation,
load balancing and automatic eviction.

3. Overview of Case studies

The Condor system [3], developed at the University of Wisconsin, is a scheduling system for an
environment of UNIX workstations, networked through a high speed LAN. The primary aim of
condor is to identify idle workstations in the environment and schedule back ground jobs on them
for load balancing. Also important was to evict the process as soon as the user reclaims the
workstation so that the owner of the remote machine is not burdened by the additional load on his
or her system. Condor is implemented entirely in the user space, by having programs linked to the
Condor migration library routines during compilation.

The Sprite Network Operating System, developed at the University of California at Berkeley [7],
represents an interesting case study of a system where migration facilities are part of the kernel.
Transparency was a prime consideration here. Sprite was implemented in a fairly homogenous
environment of Sun workstations connected over a very fast Ethernet , running the Sprite OS,
whose kernel call interface was very similar to BSD UNIX [2], the important difference being a
high performance sophisticated network file system and caching mechanisms. This, and other

aspects of the Sprite OS, as we shall see later, was very conducive to developing a migration
facility at the kernel level.

The MOSIX system [4], developed at the Hebrew University in Israel, is a high performance
cluster computing system consisting of networked work station of Pentium based PCs, connected
by a high speed LAN. MOSIX consists of a set of additions to the UNIX system[8], with the
primary feature being aggressive and dynamic load balancing. The pre-emptive migration scheme ,
implemented at the Kernel layer, has sophisticated mechanisms for "adaptive load sharing"[8], and
transparent execution.

MPVM (Migratable PVM) [5] developed at the Oregon Graduate Institute of Science and
Technology, is a migration transparent version of PVM. The PVM (Parallel Virtual Machine) [5]
is a software system that allows a network of heterogeneous workstations to be viewed as a single
virtual machine with distributed shared memory. In the original implementation of PVM, processes
were allocated to processors statically. Migration allowed the usage of idle workstations in a
dynamic manner. MPVM is implemented at the user layer. We shall also look at the performance of
MPVM compared to PVM implemented over MOSIX.

4. Migration issues

Obviously, achieving the goals of load balancing and transparency with as low over head as
possible presents a formidable task. The following are some of the main issues to be dealt with :

(1) Allocation and scheduling: How is a target node chosen? What are the factors taken into
consideration while choosing a destination host? Is load balanced dynamically, or only reallocated
during special circumstances like eviction or imminent host failure ? Does the previous history of
allocation on a node make that node more attractive due to the presence of "warm caches" [6], also
known as cache affinity scheduling ? Considering that all of the above systems represent loosely
coupled environments, how much of a difference can such a consideration make? Similarly, what
is the best allocation policy for an I/O intensive process?

(2) Once a target has been chosen, how is the process state saved and transferred? For e.g.,
would virtual memory pages be transferred all at once, increasing the latency between process
suspension and resumption, or transferred on a demand-paged basis thus speeding up migration?
An important consideration over here is how much of "residual dependency" [6] do we allow on
the ex-host ?

(3) How is migration supported by the underlying file system for kernel level schemes? Are files
assumed to be accessible from any point? For transparency, a transparent file system would itself
seem to be a prerequisite.

(4) How are name spaces dealt with ? Do process Ids, file descriptors etc change with migration?
How does global naming help? How are sockets and signals managed ?

(5) What are the scaling considerations that have been incorporated into the design ?

(6) What is the level of transparency?

We shall consider the case studies with respect to the above factors.

5. Comparison of Implementations

Allocation and scheduling:

In Condor[3], jobs are only allocated or migrated to remote works stations if the "leverage" [3] is
significant, i.e. the ratio of remote capacity to the capacity needed at the local system to support
remote execution should be large. Each work station has a local scheduler and a back ground
queue, which holds the jobs submitted by the user. A central co-coordinator is present on one work
station. Each station keeps information regarding its job load. The central coordinator uses a polling
mechanism to see which stations are available, and allocates capacity. The work station decides the
scheduling, according to the relative priority of the jobs. When the owner reclaims the machine the
process is "check-pointed" (which we explain below) and state transferred to the home machine.
The remote process does wait for an interval of up to 5 minutes, to see it the machine becomes
available again, since reclamation periods tend to be short. The main points to be noted here are
that Condor does not really take into account affinity based scheduling. Whether such a policy
would make sense in a loosely coupled system where all remote resources are freed up and no
residual dependencies remain is debatable.

In Sprite[6], processes are migrated during two occasions - when a resource intensive program is
about to start, or during eviction from a remote host. Host allocation is done using a combination of
a load-monitoring daemon on each host and a centralized idle-hosts database file. Idle hosts are
selected based on the history of idle time length. This factor is given more priority than the
presence of "warm caches" since eviction represents a greater cost. Thus host or cache affinity is
not considered in Sprite. After eviction, the process is allocated to another host if available. Also,
Sprite has the policy of leaving "minimal residual dependencies" on the ex-host [6], meaning all
state is transferred out as soon as possible.

MOSIX [10] has the most complicated scheduling mechanism among all the systems. This is
because MOSIX differs in its design goal in a fundamental way - load balancing is done
continuously, not just during creation or eviction of a process. Processes get migrated anytime the
cluster gets unbalanced, through adaptive scheduling[4]. If a process requirement exceeds a certain
threshold, then a process becomes a candiate for migration. Each process must also run for a bare
minimum time on the processor to prevent thrashing. A load vector is maintained at each node,
which contains information about the load of a random subset of neighboring nodes. This load
vector is constantly updated through "load information dissemination" [4] which is a completely
decentralized process. Candidate target nodes are chosen from this load vector. During allocation,
I/O bound processes are allocated on nodes with which this process has maximum I/O
communication (I/O affinity). Also, a process that has a history of forking other processes becomes
a good candidate for migration.

In MPVM[5], a unit of work is known as a 'task' . MPVM uses a Global Scheduler (GS), which is
basically a centralized resource manager. The GS decides the 'which' (task), 'when' and 'where'
(target node) of migration. Migration is usually done during work creation and eviction or when a
node is under excessively heavy load (Dynamic allocation) Idle hosts are located by the GS in a
manner somewhat similar to Condor. Each node has a PVM demon (pvmd) installed on it. When a
decision has been made by the GS, a signal is sent to the pvmd on the node from which the process

has to migrate. Target allocation is based on idle work station availability. MPVM does not use
cache or I/O affinity considerations.

 Transferring of State:

 Migration in Condor is basically a combination of the "Remote Unix" (RU) facility combined with
"check-pointing" capability [3]. When RU is invoked, a "shadow" process runs as a "surrogate
process” on behalf of the remote process on the home machine. System and other location
dependent calls are forwarded to the surrogate process. The "check-pointing" facility is to save the
state of the process, so that the process can be restarted elsewhere. Saving the state involves writing
the process's data and stack segments to permanent storage using the file system [9]. In a uniform
file system environment, this is equivalent to migration (since the file system is mountable from
any host), while in environments where the nodes do not have a uniform view of the file system,
calls are forwarded via RPC to the shadow process on the home node, and the results are sent
back[9]. Since condor is implemented at the user space, to access process state data, a "check-
pointing" library is used to give ability to a process to check point itself. Condor cannot save the
state of IPC structures like sockets, pipes and signals.

In Sprite [6], since migration is implemented at the kernel level, considerable amount of effort has
gone into supporting migration. Most of the migration overhead involves the transfer of virtual
memory. Remember that Sprite uses a network wide file system. Virtual memory is frequently
written to backing storage. Also, during transfer, dirty pages are flushed out of the cache. The
virtual memory file is then remounted at the new host on a demand-paged basis.. Other process
state info like openfile descriptors, file handlers , message channels etc represent less overhead.

In MOSIX [4], once a target node has been picked there is an exchange of messages between
source and destination. The destination node can choose to reject the request. MOSIX uses a
demand paged transfer of virtual memory. Because of kernel level implementation, it is easy to
store the process and processor states. Even thought the environment is generally hardware-
heterogeneous, migration is allowed only between homogenous processors. In fact, process
migration is the only feature in MOSIX that is restricted by homogeneity.

In MPVM [5], which is a user level implementation, a process establishes a TCP connection with
the destination node. All process state that can be captured by the application using the pvm library
functions is transferred to the destination and a skeletal process is constructed. Note that even
though PVM supports heterogeneous clusters, migration can only be performed between
homogenous nodes in a cluster. OS specific state cannot be migrated due to the fact that much of it
is not observable by the user level implementation.

File System and Migration

As mentioned before Condor[9] can support both uniform and non uniform views of the file
system. In an NFS like environment, where any file can be remotely mounted, check point/restart is
simpler to implement. File state information such as open file descriptors, seek position etc are
captured at check point time. It also supports non uniform view of the file system through
forwarding mechanisms via RPC when Condor is implemented over a wide area network. One
important assumption is that the state of the checkpoint file is not altered between checkpoint and
restart.

Sprite uses a globally named uniform file system, thus file access is completely transparent across
nodes. The cache flushing mechanism of the file system is used for transferring virtual memory, as
well as for keeping a consistent view of the file system. As we shall see, the most important aspect
of transparency in sprite comes from its global naming scheme.

MOSIX uses the UNIX file system, and thus, has a uniform transparent view of the file system.
This facilitates transferring of virtual memory files.

MPVM assumes that a global file system like NFS exists on both source and target nodes. This is
required for file I/O migration to work in MPVM. To accommodate file I/O migration, a set of
wrapper functions are provided in the PVM file I/O library. This allows the PVM library to
maintain a list of open file descriptors. However, note that, unlike Sprite, the file descriptors will
change across machines.

Naming

As seen above, file name spaces in Condor can be global or non uniform. Also due to lack of global
names for objects such as sockets, pipes etc the state information regarding these objects cannot be
migrated.

Sprite uses a completely global naming scheme - Files, devices, process ids and even
communication schemes are globally named. Files are logically centralized but physically
distributed [6]. An interesting aspect in Sprite is that IPC mechanisms are also completely
transparent because of this naming scheme. Objects communicate with each other using a "pseudo
device" [6] which is an additional layer of abstraction thrown in to support transparency. Only the
kernel is aware of the actual location of the pseudo device. Thus for e.g., even migration of socket
IPC which is typically unsupported in other schemes, poses no problem to Sprite.

MOSIX too uses a global naming scheme which makes the implementation transparent. Universal-
to-local mapping routines are implemented for managing file names.

MPVM assume a global naming scheme for files, even though PVM itself may run across a
heterogeneous cluster. File descriptors, process Ids and signals are not global and not migrateable,
thus hindering the goal of transparency in MPVM.

Scaling Considerations

We see that in Condor, there is a centralized coordinator who does the allocation[3]. However each
node is also autonomous since it only needs to keep track of its own load state. If the coordinator
fails, new requests are affected, not the requests that are already allocated. These aspects give
Condor a certain degree of scalability

Sprite can scale up to a few hundred work stations [2] Further scaling is limited by the fact that a
centralized idle-hosts database file is used.

MOSIX scales well due to a variety of reasons [4]. First, nodes are completely autonomous, and
the scheduling is totally decentralized. Each node maintains information only about a random

subset of nodes, usually those at close physical proximity due to I/O affinity considerations. Each
processor also sends out information regarding its load to only a random sub set of processors. All
communication is carried out only between the concerned 2 nodes during migration. MOSIX also
has what is known as "Architectural Symmetry" [4] whereby services are distributed across nodes.
Moreover each node need have only partial information about the whole cluster.

MPVM uses 2 party communication for transferring state, however scaling is limited by the fact
that a centralized resource manager (GS) is used.

Transparency

Condor is not really transparent to the user, since applications have to be linked with the Condor
library routines. However the actual check pointing and restarting procedures are transparent to the
process But the lack of a truly global naming and user level implementation hinder transparency.

Sprite, in contrast, represents a truly transparent scheme due to its global naming scheme of files,
devices and IPC mechanisms using pseudo devices. For e.g., file system transparency was
maintained by keeping the object that manages the name of the file (file server) separate from the
object that contains the file (I/O server)[6] Transparency was one of the most important goals
Sprite, even at the cost of additional complexity.

MOSIX is completely transparent, due to its naming schemes. Location dependent calls are
forwarded to the home nodes. However, MOSIX also has the ability whereby the user process can
explicitly request to be migrated using the migrate() system call, which also takes the destination
node as its argument. When this happens, the automatic scheduling scheme is bypassed. This
feature is useful for benchmarking the performance for MOSIX.

Even though MPVM strives to achieve transparency, it is not really implemented due to the fact
that process state information like process ids that are known and used by the application process
change upon migration.

6. Performance Results

Condor performance results indicate that it is ideally suited to long running computationally
intensive jobs [4]. Long jobs are check pointed less often, since they finally end up on a station
experiencing no activity. Condor is not suited to short jobs.

In Sprite, since evictions are usually infrequent, most of the latency observed by users is due to the
overhead associated with remote execution. This is similar to active migration, except that no
virtual memory is transferred. The best results for Sprite were achieved when using the pmake
program when, using 10 hosts was about 5.5 times as fast as when using a single host. It is worth
noting that migration has been one of the most fragile aspects of Sprite [1], leading to frequent
kernel breakdowns. This often happened because different kernel versions were used. As a result,
migration was later disallowed between kernels of differing version numbers.

A study of the performance results of MOSIX [4]shows that performance lags the static optimal
balancing of loads by only a factor of 2%.

MPVM does not use check point migration [5]. The entire virtual address space is transferred on
migration in contrast to a demand-paged scheme, which adds to the latency till restart. Performance
results have shown that this is the dominant cost in migration. A comparison of MPVM with PVM
over MOSIX shows that the native support for migration in MOSIX results in a much better
performance than MPVM.

 Condor Sprite Mosix MPVM

Scheduling
and
allocation

Centralized allocation.
Individual scheduling.
Migration only during
creation or eviction

Uses centralized file
for host search.
Migration during
process creation and
eviction

Completely
distributed
allocation system.
Highly dynamic
load balancing

Centralized
allocation. Individual
nodes negotiate.
Migration during
creation, eviction
well as dynamic

File
System

Uniform file system –
state transferred. Also
supports non uniform
file system through
RPC

Network wide
transparent , uniform
file system similar to
NFS

Network wide file
system similar to
NFS

Assumes existence of
NFS (or other global
file system)

Naming Global name for file
systems. Localized
names for process ids ,
file descriptors etc.

Global naming
scheme

Global naming
scheme

File names are
global. Process ids,
descriptors etc are
not

Transparency Not fully transparent Fully transparent Fully transparent Not fully transparent

Scale Scalable, but uses
centralized coordinator

Scalable to few
hundred work
stations, since central
host-file is used

Very scalable.
Has completely
distributed
policies

Scalable to certain
extent. Central
resource manager vs
autonomous node
communication.

Table 1: A summary of comparisons.

7. Analytical results in Process Migration

Eager et al [10] have shown analytically that migrating active processes for the purpose of load
sharing offers only modest performance benefits over a non migratory load sharing scheme, and
that too under fairly extreme conditions. Moreover, they also show that migratory load sharing
never yields major performance benefits. This is generally consistent with the performance results
of the systems we have considered, whereby even in the best case, performance benefits of only
25% were achieved. Efficient migration is indeed a tough call, since by its very nature migration
presents considerable overhead. However, load sharing may not always be the only aim for
migration. Evicting processes so that the machine resources may be reclaimed by the owner is an
important motivation. Also, there can be cases where a process has to be migrated from a host due
to imminent host shutdown. From a point of view of load sharing too, it is not hard to see that long
running computationally intensive jobs with infrequent migrations, stands to benefit from a
migratory load sharing scheme.

8. Conclusions

It is worth quoting Fred Douglis, [1] who implemented the migration facility in Sprite, at this point.

 "..Sometime ago shortly before the file system was to be reimplemented, we had a lengthy discussion about the future
of process migration in Sprite. The consensus at that time was that migration was probably a mistake : it was too
difficult to implement.. ...In retrospect, I may safely say that our initial lack of faith was misplaced. Process migration
has evolved from a toy prototype to a mature, extremely useful facility. Users are thankful not only for the significant
improvement they see when using their hosts, but also for the minimal impact that other users have on their work
stations."

Process migration is difficult. Providing efficiency and transparency is even more difficult. A
global naming scheme is seen as an essential ingredient for providing transparency [1], and hiding
remote execution. Techniques like affinity scheduling are out weighed by other considerations like
time to eviction in a loosely coupled environment where migration is usually implemented. There
are scenarios, like long running jobs or extremely variable dynamic loads, where the pay offs may
justify the efforts. However these do not represent the general case. If an optimal or nearly optimal
static scheduling can be done apriori, then a migratory load sharing scheme is not viable. The
consensus at this time about migration is that, generally, it should be used only as a last resort.

9 Acknowledgements

I would like to thank Dr. Neuman and Dr. Obraczka for their timely feedback on my proposal on
this topic.

References:

1. Fred Douglis: Experience with Process Migration in Sprite. In Distributed and Multiprocessor
Systems Workshop Proceedings, pages 59--72, Fort Lauderdale, FL, October 1989. Available on
sprite.berkeley.edu or here on ftp.ibr.cs.tu-bs.de

2. F. Douglis and J. Ousterhout: Transparent Process Migration: Design Alternatives and the Sprite

Implementation. In Software -- Practice and Experience, volume 21, number 8, pages 757--785,
August 1991. Available on sprite.berkeley.edu or here on ftp.ibr.cs.tu-bs.de

3. M Litzkow, Miron Livny, Matt Mutka Condor - A Hunter of Idle Work Stations, Proceedings of the

8th. Int'l Conf. on Distributed Computing Systems, 104-111, 1988.

4. Amnon Barak and Shai Guday and Richard G. Wheeler: The MOSIX Distributed Operating System.
LNCS 672, Springer, Berlin, 1993.

5. J Casas, D Clark, R Konoru, S Otto, R Prouty, J Walpole : MPVM: A Migration Transparent Version of

PVM, OGI Technical Report, Feb 1995

6. Frederick Douglas : Transparent Process Migration in the Sprite Operating System (PhD Thesis,
University of California, Berkeley), September 1990

7. J Ousterhout et al : The Sprite Network Operating System (IEEE Computer, February 1988)

8. Annon Barak and Oren La’adan: The MOSIX Multicomputer Operating System for High Performance

Cluster Computing, Publication of the Institute of Computer Science, Hebrew University of
Jerusalem

9. Michael Litzkow, Todd Tannenbaum, Jim Basney, and Miron Livny: Checkpoint and Migration of

UNIX Process in the Condor Distributed Processing System, Computer Science Department,
University of Wisconsin, Madison

10. Amir Y., Awerbuch B., Barak A., Borgstrom R.S. and Keren A., An Opportunity Cost Approach for

Job Assignment in a Scalable Computing Cluster (ftp), IEEE Tran. Parallel and Distributed Systems,
Vol. 11, No. 7, pp. 760-768, July 2000.

11. D. Eager and E. Lazowska and J. Zahorjan: The Limited Performance Benefits of Migrating Active

Processes for Load Sharing. In Conf. on Measurement & Modeling of Comp. Syst., (ACM
SIGMETRICS), May 1988, pages 63--72.

